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RNA-Seq Tutorials

* Tutorial 1
— RNA-Seq experiment design and analysis

— Instruction on individual software will be
provided in other tutorials

e Tutorial 2

— Hands-on using TopHat and Cufflinks in
Galaxy

e Tutorial 3

— Advanced RNA-Seq Analysis topics




Galaxy.msi.umn.edu

——_ Galaxy / UMN Analyze Data  Workflow  Shared Data  Visualization  Admin

Tools Options + y i History Options +
MO PTE AN IITENS — Tophat for lllumina (version 1.5.0) ! -
Metagenomic analyses y By [—

: RNA-Seq FASTQ file: o =
Metagenomics Mothur - imported: Unnamed 157.9 Mb
FASTA manipulation : " _ 9 _ l _ - history
NCBI BLAST + Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33 ' —

NGS: QC and manipulation Will you select a reference genome from your history or use a built-in index?: 14: Neighbor Joinin @7 R
Tree on data 12

NGS: Picard (beta) Use a built-in index : —

NGS: Assembly Built-ins were indexed using default options 13: Neighbor Joining ® 0 R

NGS: Mappin Select a reference genome: Tree on data 12

NGS: Indel Analysis . .

Amellifera_Honeybee apiMel3 v :
NGS: RNA Analysis 12: hyphy.fasta @)X

If your genome of interest is not listed, contact the Galaxy team

NGS: SAM Tools

NGS: GATK Tools |4 | Is this library mate-paired?: , ;:;:2:1:2:’; éoininq @R
NGS: Peak Calling Single-end
NGS: Simulation TopHat settings to use: 10: Neighbor Joining @ J R
SNP/WGA: Data; Filters Tree on data 6

Use Defaults $

SNP/WGA: QC; LD; Plots

You can use the default settings or set custom values for any of Tophat's parameters. 9: ® R

SNP/WGA: Statistical Models =
B pSymBGenesConcatenated.fasta
Human Genome Variation Execute
VCF Tools €3 8: Neighbor Joining ® {§ &
IGVTools Tophat Overview Tree on data 6
MSI
TE TopHat is a fast splice junction mapper for RNA-Seq reads. It aligns RNA-Seq reads to 7: Nei et
: Neighbor Joining ®
Masonic Cancer Center Tools mammalian-sized genomes using the ultra high-throughput short read aligner Bowtie, and gee ST RS
EMBOSS then analyzes the mapping results to identify splice junctions between exons. Please cite: B i
Trapnell, C., Pachter, L. and Salzberg, S.L. TopHat: discovering splice junctions with RNA-

Workflows IQ ® R

Web-base platform for bioinformatic analysis
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Introduction

Introduction
* (Gene expression
 RNA-Seq
» Platform characteristics
* Microarray comparison
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92-94% of human genes undergo alternative splicing,

86% with a minor isoform frequency of 15% or more
E.T. Wang, et al, Nature 456, 470-476 (2008)



Introduction

 RNA-Seq
— High-throughput sequencing of RNA

— Transcriptome assembly

* Qualitative identification of expressed
sequence

— Differential expression analysis

* Quantitative measurement of transcript
expression




Sample 1

J mRNA isolation

\l' Fragmentation
RNA -> cDNA

Sequence fragment end(s)

— —
1
—_ ——
(= ] _‘
—_ ——
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Vv Map reads
Genome ———————————rcrrorrorroreoreoro
I—— [ —
Reference 7 A B
Transcriptome

Calculate transcript abundance

Gene A Gene B
Sample 1 4 4

# of Reads

Gene A Gene B
Sample 1 4 2

Reads per kilobase of exon

Gene A | Gene B | Total

Sample 1 4 2 6

Sample 2 7 3 12

Reads per kilobase of exon

Gene A | Gene B | Total

Sample 1 v 3 6

Sample 2 .6 3 12

Reads per kilobase of exon per million mapped reads

RPKM
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Brain technical 2 (RPKM)

RPKM

10¢
10°
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0.0

Technical replicates
R? =0.96

Exons
(93%)

o1 1 10 100 1,000 10,000
Brain technical 1 (RPKM)

Sensitivity and dynamic range
R? =0.99

10¢ 10° 10® 107 10% 10°
Reference transcripts per 100 ng mRNA

Intergenic
(3%)

Introns
(4%)

Ali Mortazavi et al., Nature Methods - 5, 621 - 628 (2008)



Introduction

 RNA-Seq (vs Microarray)
— Strong concordance between platforms
— Higher sensitivity and dynamic range
— Lower technical variation
— Available for all species
— Novel transcribed regions
— Alternative splicing
— Allele-specific expression
— Fusion genes
— Higher informatics cost
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Experimental Design

 Biological comparison(s)
Paired-end vs single end reads
* Read length

 Read depth

* Replicates

* Pooling

Experimental Design

RNA




Experimental design

* Simple designs (Pairwise comparisons)

Two group
Drug effect

Experimental
Control (drug applied)

° Com pIeX d eSig NS— [ Consult a statistician ]

Cancer
sub-type 1

@
o

Cancer
sub-type 2

Two factor
Cancer type X drug

Cancer sub-type 1
With drug

S
S
@

Cancer sub-type 2
With drug

Matched-pair

Normal Cancer
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Experimental design

 What are my goals?
— Transcriptome assembly?
— Differential expression analysis?
— ldentify rare transcripts?

* What are the characteristics of my system?
— Large, complex genome”?
— Introns and high degree of alternative splicing?
— No reference genome or transcriptome??
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Experimental design

Price Per Sample
HiSeq 2000 Rates
10 million 20 million 50 million 100 million 200 million
reads (1/20 lane) | reads (1/10 lane) | reads (1/4 lane) | reads (1/2 lane) | reads (1 lane)
Single-read (1x50 cycles) $267 $345 $581 $975 $1,762
Single-read (1x100 cycles) $290 $395 $696 $1,205 $2,225
Paired-end read (2x50 cycles) $320 $432 $835 $1,480 $2,775
Paired-end read (2x100 cycles) $365 $540 $1,050 $1,940 $3,700

BMGC RNA-Seq Price list (Jan 2012)

AN,
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Experimental design

Price Per Sample
HiSeq 2000 Rates
10 million 20 million 50 million 100 million 200 million
reads (1/20 lane) | reads (1/10 lane) | reads (1/4 lane) | reads (1/2 lane) | reads (1 lane)
Single-read (1x50 cycles) $345 $581 $975 $1,762
Single-read (1x100 cycles) $290 $395 $696 $1,205 $2,225
Paired-end read (2x50 cycles) $320 $432 $835 $1,480 $2,775
Paired-end read (2x100 cycles) $365 $540 $1,050 $1,940 $3,700

10 million reads per sample, 50bp single-end reads
« Small genomes with no alternative splicing

AN,
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Experimental design

Price Per Sample
HiSeq 2000 Rates
10 million 20 million 50 million 100 million 200 million
reads (1/20 lane) | reads (1/10 lane) | reads (1/4 lane) | reads (1/2 lane) | reads (1 lane)
Single-read (1x50 cycles) $267 $345 $581 $975 $1,762
Single-read (1x100 cycles) $290 $395 $696 $1,205 $2,225
Paired-end read (2x50 cycles) $320 $835 $1,480 $2,775
Paired-end read (2x100 cycles) $365 $540 $1,050 $1,940 $3,700

20 million reads per sample, 50bp paired-end reads
« Mammalian genomes (large transcriptome, alternative splicing, gene duplication)

AN,
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Experimental design

Price Per Sample
HiSeq 2000 Rates
10 million 20 million 50 million 100 million 200 million

reads (1/20 lane) | reads (1/10 lane) | reads (1/4 lane) | reads (1/2 lane) | reads (1 lane)
Single-read (1x50 cycles) $267 $345 $581 $975 $1,762
Single-read (1x100 cycles) $290 $395 $696 $1,205 $2,225
Paired-end read (2x50 cycles) $320 $432 $835 $1,480 $2,775
Paired-end read (2x100 cycles) $365 $540 @050 $1,940 S@

50-200 million reads per sample, 100bp paired-end reads

» Transcriptome Assembly (100X coverage of transcriptome)

50bp Paired-end >> 100bp Single-end
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Experimental design

* Technical replicates

— Not needed: low technical variation
 Minimize batch effects
« Randomize sample order [

 Biological replicates
— Not needed for transcriptome assembly
— Essential for differential expression analysis

— Difficult to estimate
« 3+ for cell lines
« 5+ for inbred lines
« 20+ for human samples




Experimental design

* Pooling samples
— Limited RNA obtainable
* Multiple pools per group required
— Transcriptome assembly




Experimental design

RNA-seq: technical variability and sampling

Lauren M Mclntyre, Kenneth K Lopiano, Alison M Morse, Victor Amin, Ann L Oberg, Linda J Young and Sergey V
Nuzhdin

BMC Genomics 2011, 12:293

Statistical Design and Analysis of RNA Sequencing Data
Paul L. Auer and R. W. Doerge
Genetics. 2010 June; 185(2): 405-416.

Analyzing and minimizing PCR amplification bias in lllumina sequencing

libraries

Daniel Aird, Michael G Ross, Wei-Sheng Chen, Maxwell Danielsson, Timothy Fennell, Carsten Russ, David B Jaffe,
Chad Nusbaum and Andreas Gnirke

Genome Biology 2011, 12:R18

ENCODE RNA-Seq guidelines

http://www.encodeproject.org/ENCODE/experiment_guidelines.html
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RNA

fastq

Sequencing

Platforms

Library preparation
Multiplexing
Sequence reads



Sequencing

* |llumina sequencing by synthesis

— GAlIx
 replaced by HiSeq
— HiSeq2000
— MiSeq
 low throughput, fast turnaround

¢ SOLlD (not available at BMGC)

— “Color-space” reads (require special mapping software)
— Low error rate

* 454 pyrosequencing
— Longer reads, lower throughput

M UNIVERSITY OF MINNESOTA

5 Driven to Discover




Sequencing

° Library preparation (Illumina TruSeq protocol for HiSeq)
— RNA isolation
— Ploy-A purification
— Fragmentation
— cDNA synthesis using random primers

Genomic DNA Insort = J00 bp

— Adapter ligation '
— Size selection l
— PCR amplification —————————

Paired End
PCR Enrichment

Fragment = 419 bp
PSS Py
[ . e ]
s S
Y ’ Y v 2, Y o W .
28bp 33 bp 300 bp 3 bp 25bp



Sequencing

* Flowcell
— 8 lanes
— 200 Million reads per lane

— Multiplex up to 24 samples on
one lane using barcodes




Sequencing

Adapter cDNA insert Adaptor

) ) A
[ | | | \

Read 1
“left” read

Index read Im pm————r

Read 2
“right” read
(optional)

Adaptor w
contamination
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Sequencing

* Library types
— Polyadenylated RNA > 200bp (standard method)
— Total RNA
— Small RNA

— Strand-specific
* Gene-dense genomes (bacteria, archaea, lower eukaryotes)
» Antisense transcription (higher eukaryotes)

— Low input
— Library capture




Sequence Data Format

- Data delivery
— /project/Pl-groupname/120318 _SN261 0348 A81JUMABXX

- fastq_flt/ Bad reads removed by lllumina software, for use in data analysis
« fastq/ Raw sequence output for submission to public archives, contains bad reads

— Upload to Galaxy [ -

 File names

— L1_R1_CCAAT _cancer1.fastq
— L1 _R2 CCAAT cancer1.fastq

° Fastq format (lllumina Casava 1.8.0)—[ Formats Vary] $9bggter flag
— 4 lines per read N=good

Machine ID barcode

Don’t use in analysis ]

Read ID —> @HWI-MOOZ%Z:4:OOOOOOOOO-AOABC:1 :1:18376:2027 1:N:0:AGATC
Sequence —> TTCAGAGAGAATGAATTGTACGTGCTTTTTTTGT 'X
+ > +
Quality score __> =1:27A7+?77+<<@AC<3<,33@A;<A?A=:4=
Phred+33

Read pair #
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fastq

Data Quality Control

fastq

Transcriptome
Assembly

Data Quality Control

* Quality assessment
* Trimming and filtering



Data Quality Assessment

- Evaluate read library quality
— ldentify contaminants
— ldentify poor/bad samples

o Software

— FastQC (recommended)
« Command-line, Java GUI, or Galaxy

— SolexaQC

« Command-line
« Supports quality-based read trimming and filtering

— SAMStat

« Command-line
 Also works with bam alignment files
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Data Quality Assessment

« Trimming: remove bad bases from (end of) read
— Adaptor sequence
— Low quality bases

 Filtering: remove bad reads from library
— Low quality reads
— Contaminating sequence
— Low complexity reads (repeats)

— Short reads
« Short (< 20bp) reads slow down mapping software
* Only needed if trimming was performed

« Software
— Galaxy, many options (NGS: QC and manipulation)

— Tagdust
— Many others: http://seqanswers.com/wiki/Software/list
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Data Quality Assessment - FastQC

Quality scores across all bases {lllumina 1.5 encoding)

ETETTLT T ] po RO

Good

I T
1]
1 1
[ ]
([ ]
([ ]
]
T [ ]
I
(T ]

Quality scores across bases
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Phred 30 = 1 error / 1000 bases
Phred 20 = 1 error / 100 bases
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Data Quality

Assessment - FastQC

5000000 G OOd

4000000

3000000

2000000

1000000

Quality score distribution over all sequences

” Quality scores across
reads

core distribution over all sequences

Bad

Filtering needed

Average Quality per read

2 34567 8 910 12 14 16 18 20 22 24

Mean Sequence Quality (Phred Score)

26 28 30 32

34 36 38

20000

10000

N

2 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Mean Sequence Quality (Phred Score)




Data Quality Assessment - FastQC

700000

600000

500000

400000

300000

200000

100000

GC distribution over all sequences

Good

02468 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67

Mean GC content (%)

GC count per read
Theaoretical Distribution

71 75 79 83 87 91 95 99

GC Distribution

800000

600000

400000

200000

GC distribution over all sequences

Bad

GC count per read
Thearetical Distribution

02468 11 15 19 23 27 31 35 39 43 47 51 55 59 63 &7 71 75 79 83 87 91 95 99

Mean GC content {3



Data Quality Assessment - FastQC

High level of sequencing adapter contamination, trimming needed
Overrepresented sequences

I S ) rossve Soue

GTATTACAGATCGGAACGAGCGGTTCAGCAGGAATGCCGAGACCCGATCTCG 820428 .8366639370528275 Illumina Paired E PCR Primer 2 (100% over 43bp)
GTATACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGT 749728 2.5922157461699773 Illumina Paired End PCR Primer 2 (100% over 44bp)
CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGCGTTCAGCAGGAATGCCG 648852 2.243432780066747 Illumina Paired End Adapter 2 (100% over 31lbp)

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAG 176765 0.6111723403310748 Illumina Paired End PCR Primer 2 (97% over 36bp)
ACGTCGTAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCG 143840 0.4973327832615156 Illumina Paired End PCR Primer 2 (100% over 43bp)
GTATTCAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGT 124281 0.42970672717272257 Illumina Paired End PCR Primer 2 (100% over 44bp)
GTATCAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTA 99207 0.34301232917842867 Illumina Paired End PCR Primer 2 (100% over 45bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCCGATCTCGTATGCCGT 96289 0.33292322279941655 Illumina Paired End PCR Primer 2 (100% over 50bp)
CGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGCAG 93842 0.3244626185124245 Illumina Paired End PCR Primer 2 (96% over 33bp)
CGTTACGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCCGATCTCG 75370 0.26059491013918545 Illumina Paired End PCR Primer 2 (100% over 43bp)
CGTACGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGT 63691 0.22021428183196043 Illumina Paired End PCR Primer 2 (100% over 44bp)
ACGTAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTAT 56765 0.19626734873359242 Illumina Paired End PCR Primer 2 (100% over 46bp)

TACTGTAAGATCGGAAGAGCGGTTCAGCAGGAATGCCCGAGACCGATCTCG 42991 0.14864317078139472 Illumina Paired End PCR Primer 2 (100% over 43bp)
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Data Quality Assessment - FastQC

Normal level of sequence duplication in 20 million
read mammalian sample

Sequence Duplication Level > = 61.84%
100

%Duplicate relative to unigue
90
80
70
60
50
40
30

20

10

1 2 3 4 5 & 7 g 9 10+
Sequence Duplication Lewel
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Data Quality Assessment - FastQC

Normal sequence bias at beginning of reads due to
non-random hybridization of random primers

Sequence content across all bases

100
%C
90 )
%G
80
70
60
50

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 IVERSITY OF MINNESOTA
Position in read (bp) Driven to Discover




Data Quality Assessment

« Recommendations
— Generate quality plots for all read libraries
— Trim and/or filter data if needed

« Always trim and filter for de novo transcriptome assembly
— Regenerate quality plots after trimming and
filtering to determine effectiveness




fastq

SAM/BAM

Reference

Read mapping fasta

Read Mapping

Pipeline
Software
Input
Output



Mapping — with reference genome

Reference Millions of short reads
Genome

Spliced aligner

Reads aligned
to genome

SAM/BAM

Abundance estimation
"
Differential expression analysis
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Mapping — with reference genome

Reference Millions of short reads

Genome

Splicedkaligner _
Reference splice

Unmapped Junction library

aligner reads

Fasta/GTF

De novo splice
junction library

Fasta/GTF

aligner

Reads aligned

|
to genome S —— I
SAM/BAM \ll

Abundance estimation | | |
\" 1 |
Differential expression analysis 3 exon gene junction library
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Mapping
« Alignment algorithm must be

— Fast
— Able to handle SNPs, indels, and sequencing errors
— Allow for introns for reference genome alignment (spliced alignment)

* Burrows Wheeler Transform (BWT) mappers
— Faster
— Few mismatches allowed (< 3)
— Limited indel detection
— Spliced: Tophat, MapSplice
— Unspliced: BWA, Bowtie
 Hash table mappers
— Slower
— More mismatches allowed
— Indel detection
— Spliced: GSNAP, MapSplice
— Unspliced: SHRIMP, Stampy
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Mapping
* |nput
— Fastq read libraries

— Reference genome index (software-specific: /project/db/genomes)

— Insert size mean and stddev (for paired-end libraries)
* Map library (or a subset) using estimated mean and stddev

» Calculate empirical mean and stddev
— Galaxy: NGS Picard: insertion size metrics
— Cufflinks standard error

* Re-map library using empirical mean and stddev

—
Adapter Left DNA Insert Adapter Right

40bp Read

—"

40bp Read

. —
Inner Distance

Between Mate Paifs M UNIVERSITY OF MINNESOTA
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Mapping

* Output
— SAM (text) / BAM (binary) alignment files
* SAMtools — SAM/BAM file manipulation
— Summary statistics (per read library)
* % reads with unique alignment
* % reads with multiple alignments

* % reads with no alignment
* % reads properly paired (for paired-end libraries)
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Differential Expression

* Discrete vs continuous data
 Cuffdiff and EdgeR

SAM/BAM

Reference
Transcriptome

GFF/GTF

Differential
Expression
Analysis

M UNIVERSITY OF MINNESOTA
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Differential Expression

 Discrete vs Continuous data

— Microarray florescence intensity data: continuous
* Modeled using normal distribution

— RNA-Seq read count data: discrete
* Modeled using negative binomial distribution

Microarray software cannot be used to analyze RNA-Seq data
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Differential Expression

« Cuffdiff (Cufflinks package)

— Pairwise comparisons

— Differential gene, transcript, and primary transcript expression; differential
splicing and promoter use

— Easy to use, well documented

— Input: transcriptome, SAM/BAM read alignments (abundance estimation built-in)
 EdgeR

— Complex experimental designs using generalized linear model

— Information sharing admong genes (Bayesian gene-wise dispersion estimation)

— Difficult to use R package — [ Consultastatistician]

— Input: raw gene/transcript read counts (calculate abundance using separate software)
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Read mapping

/

Transcript abundance
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!

Differential

expression

analysis

Suggested,

Implementation
(reference genome
available)

[ Introduction ]

/

[ Two group design ]

v

[ Sequencing J

:

Reference
Transcriptome

N

Cuffdiff
(Cufflinks package)
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Transcriptome
Assembly

Transcriptome Assembly

* Pipeline
« Software
* Input

* Output



RNA-Seq RNA-Seq RNA-Seq

* Reference genome * Reference genome reference genome
» Reference transcriptome reference transcriptome reference transcriptome

[ Experimental Design J [ Experimental Design ] { Experimental Design }
{[Rna [rna
Sequencing [ Sequencing ] Sequencing
[ Data Quality Control } [ Data Quality Control ] [ Data Quality Control }\!
@ Reference m Reference
l Genome Transcriptome
Read mapping Read mapping R

/
Transcriptome l Read mapping
assembly
, — GG
v

Differential Differential Differential
Expression Analysis Expression Analysis Expression Analysis

Reference
Transcriptome
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TranSCFiptOme ASSGmb|y -with reference genome

Reference transcriptome available No/poor reference transcriptome available

Reads aligned Reads aligned

to genome to genome
SAM/BAM > ( de novo
-~ tair e) Assembl er SAM/BAM
UCSC fincar
e.,EnsembI De novo

transcriptome ‘

Refer_ence Novel transcript GFF/GTF
transcriptome identification

GFF/GTF

Abundance Annotate Abundance
estimation estimation
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TranSCrIptome ASSGmb|y -with reference genome

« Reference genome based assembly
— Cufflinks, Scripture

* Reference annotation based assembly
— Cufflinks

* Transcriptome comparison
— Cuffcompare

« Transcriptome Annotation
— Generate cDNA fasta from annotation (cufflinks’ gffread program)
— Align to library of known cDNA (RefSeq, GenBank)
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Transcriptome Assembly - no reference genome
[ computtionaly tensiv |

Assembler

Trinity
Trans-ABySS

Velvet/oasis

Millions of short reads

Unspliced Aligner

De novo
Transcriptome

Reads aligned
to transcriptome

SAM/BAM

Abundance estimation

|

Differential expression
analysis
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Further Reading
Bioinformatics for High Throughput Sequencing ——

Rodriguez-Ezpeleta, Naiara.; Hackenberg, Michael.; Aransay, Ana M.;
SpringerLink New York, NY : Springer c2012

RNA sequencing: advances, challenges and opportunities
Fatih Ozsolak1 & Patrice M. Milos1
Nature Reviews Genetics 12, 87-98 (February 2011)

Computational methods for transcriptome annotation and quantification using RNA-seq
Manuel Garber, Manfred G Grabherr, Mitchell Guttman & Cole Trapnell \
Nature Methods 8, 469-477 (2011)

able of RNA-Seq software

Next-generation transcriptome assembly
Jeffrey A. Martin & Zhong Wang
Nature Reviews Genetics 12, 671-682 (October 2011)

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat

and Cufflinks

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Dachwan Kim, David Kelley, Harold Pimentel, Steven Salzberg, John L Rinn &
Lior Pachter

Nature Protocols 7, 562-578 (2012)

SEQanswerscom  _—

biostar.stackexchange.com
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Questions / Discussion




